B.Sc. 3rd Semester (Honours) Examination, 2022 (CBCS)
 Subject : Physics
 Course : CC-V

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions from the following:
(a) If 2π be the period of $\sin x$ then what will be the period of (i) $\sin 2 \pi x$ and (ii) $\sin (4 t-1)$?
(b) Write Parseval's identity and explain the terms therein.
(c) Normalize $P_{2}(x)$ in the interval $(-1,1)$.
(d) Write down Hermite differential equation and check its singularity at $x=0$.
(e) Express the integral $\int_{0}^{1} \sqrt[3]{\ln x} d x$ as a Γ function.
(f) Show that $\beta(p+1, q)=\frac{p}{p+q} \beta(p, q)$.
(g) Prove that error function is an odd function of x.
(h) Write a short note on different types of systematic errors.

Answer any two questions from the following.
2. Expand

$$
\begin{aligned}
f(x) & =\sin x \text { when } 0 \leq x<\pi \\
& =0 \quad \text { when } \pi \leq x \leq 2 \pi
\end{aligned}
$$

Comment on the result.
3. Prove the following:
(a) $(2 n+1) x P_{n}(x)=n P_{n-1}(x)+(n+1) P_{n+1}(x)$
(b) $(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)$
4. Prove that $\operatorname{erfc}(x) \cong \frac{e^{-x^{2}}}{x \sqrt{\pi}}\left[1-\frac{1}{2 x^{2}}+\frac{1.3}{\left(2 x^{2}\right)^{2}}-\frac{1.3 .5}{\left(2 x^{2}\right)^{3}}+\cdots\right]$.
5. The displacement y of a viscously damped string is given by $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}-2 k \frac{\partial y}{\partial t}$. Find the general solution of the above equation by the method of separation of variables. (Consider small damping.)
6. (a) Find out the solution of the following differential equation:

$$
x \frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+k^{2} x y=0
$$

(b) What do you understand by propagation of errors? Measured value of length, L of a simple pendulum is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What will be the accuracy in the determination of g ?
7. (a) Prove that $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}=\frac{\sqrt{\pi}}{n} \frac{\Gamma\left(\frac{1}{n}\right)}{\Gamma\left(\frac{n+2}{2 n}\right)}$.
(b) Prove that $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\frac{1}{2} \beta\left(\frac{3}{4}, \frac{1}{4}\right)$.
(c) Prove that $\frac{\beta\left(\frac{p+1}{2}, \frac{1}{2}\right)}{\beta\left(\frac{p+1}{2}, \frac{p+1}{2}\right)}=2^{p}$.
8. (a) Plot the given periodic function $f(x)=\left\{\begin{array}{ll}-1, & -\pi<x<\frac{\pi}{2} \\ 1, & \frac{\pi}{2}<x<\pi\end{array}\right.$.
(b) Express $f(x)=x$ as a Fourier series in the interval, $-\pi<x<\pi$.
(c) Solve the equation by power series method: $4 x y^{\prime \prime}+2 y^{\prime}+y=0$
9. (a) Prove that $\mathfrak{J}_{-p}(x)=(-1)^{p} \mathfrak{I}_{p}(x)$.
(b) At tightly stretched string with fixed end points at $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}(\pi x / l)$. If it is released from rest from this position, find the displacement $y(x, t)$.

